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Abstract

Spinal cord injury (SCI) commonly results in permanent loss of motor, sensory, and autonomic function. Recent clinical studies
have shown that epidural spinal cord stimulation may provide a beneficial adjunct for restoring lower extremity and other neuro-
logical functions. Herein, we review the recent clinical advances of lumbosacral epidural stimulation for restoration of sensorimo-
tor function in individuals with motor complete SCI and we discuss the putative neural pathways involved in this promising
neurorehabilitative approach. We focus on three main sections: review recent clinical results for locomotor restoration in com-
plete SCI; discuss the contemporary understanding of electrical neuromodulation and signal transduction pathways involved in
spinal locomotor networks; and review current challenges of motor system modulation and future directions toward integrative
neurorestoration. The current understanding is that initial depolarization occurs at the level of large diameter dorsal root proprio-
ceptive afferents that when integrated with interneuronal and latent residual supraspinal translesional connections can recruit
locomotor centers and augment downstream motor units. Spinal epidural stimulation can initiate excitability changes in spinal
networks and supraspinal networks. Different stimulation parameters can facilitate standing or stepping, and it may also have
potential for augmenting myriad other sensorimotor and autonomic functions. More comprehensive investigation of the mecha-
nisms that mediate the transformation of dysfunctional spinal networks to higher functional states with a greater focus on inte-
grated systems-based control system may reveal the key mechanisms underlying neurological augmentation and motor
restoration after severe paralysis.
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INTRODUCTION

Spinal cord injury (SCI) commonly results in permanent
loss of sensorimotor and autonomic function which can
impact quality of life, functional independence, physical
and psychological health, and social and economic partici-
pation. In the United States, �18,000 SCI occur annually,
and an estimated 1,300,000 people are living with SCI-
related neurologic deficits (1, 2). SCI more commonly afflicts
younger individuals, resulting from traffic accidents, falls,
and other recreational or occupational trauma (1, 3). Injury
grade is most commonly stratified by the American Spinal
Injury Association (ASIA) Impairment Scale: i.e., motor and

sensory complete (AIS-A), motor complete-sensory incom-
plete (AIS-B), and gradations of motor incomplete (AIS-C to
AIS-E). Almost half of SCIs result in complete sensorimotor
paralysis where significant recovery is rare (1–3). Restoration
of neurologic function is of paramount importance and a
meta-analysis across twenty-four studies has identified con-
sistent neurorestorative priorities. Bladder, bowel, and sex-
ual function are always considered a high priority (4, 5). In
terms of motor function, individuals with paraplegia identi-
fied restoration of ambulation as the most critical priority
followed by standing (6), whereas tetraplegic individuals pri-
oritized restoration of hand/arm function ahead of lower
limb function (4, 5, 7). Although attempts to treat SCIs are
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underway using, for example, cell replacement strategies
(e.g., stem cells, progenitor cells, Schwann cells), implantable
polymer scaffolds, and various other agents (e.g., growth fac-
tors, axon-guidance molecules, and gliosis-inhibiting mole-
cules), significant functional recovery has remained elusive
and there is still no cure. Individuals with incomplete SCI
who have residual ability to generate volitional muscle acti-
vation may benefit from certain neurorehabilitative regi-
mens involving activity-based therapies to promote network
reorganization with modest functional gains. However, this
does not usually occur in the setting of complete motor pa-
ralysis (8–12). Assistive technologies such as exoskeletons
and weight-support devices exist for the purpose of rehabili-
tation (13, 14), however, are far from replacing the wheelchair
for everydaymobility.

Recent studies have shown that epidural stimulation
may restore functional and volitional lower extremity
movements after SCI, even in the setting of chronic com-
plete paralysis (15–27). Herein, we review the recent
advances in epidural stimulation for restoration of loco-
motion after clinically defined complete motor paralysis.
We discuss putative neuronal networks and pathways
modulated by epidural stimulation. We provide an over-
view of the motor control systems, review the concept of
central pattern generators (CPG) for locomotion, and dis-
cuss the current views on electrical recruitment and epi-
dural motor system neuromodulation.

EMERGENCE OF SPINAL EPIDURAL
STIMULATION FOR LOCOMOTOR RECOVERY
Epidural stimulation emerged in the late 1960s when neu-

rosurgeon Norman Shealy and engineering graduate student
Thomas Mortimer developed the “dorsal column stimula-
tor,” the first implantable use of spinal cord stimulation (28,
29). After initial applications for chronic pain based on
Melzack and Wall’s “gate control” theory (30), Cook (31, 32)
and Dooley (33) then independently described observations
of motor system modulation (34). Further investigations for
restoring motor function sparked in the 1980s and 1990s,
when during efforts to ameliorate multiple sclerosis-related
spasticity several investigators serendipitously observed an-
ecdotal improvements in voluntary motor, bladder, and
bowel function (35–37). In 1998, Dimitrijevic and colleagues
(38, 39) reported that lumbar stimulation at 25–60 Hz gener-
ated rhythmic flexion/extension patterns in six paraplegic
individuals and proposed this finding as functional evidence
of central pattern generators (CPGs) in humans. Based on
key observations in animal studies by Grillner and Zangger
(40, 41), Herman and coworkers were the first to demon-
strate that spinal epidural implants commonly used to treat
chronic pain could also be used to facilitate improvements
of motor function in humans after spinal cord injury. They
reported that two subjects with incomplete injuries who
were able to ambulate but with considerable difficulty, could
step more effectively and with less metabolic stress during
active epidural stimulation. The participants also noted
more ease with stepping during active stimulation (42–44).
The decades of preceding preclinical studies provided the
stimulus for the proof of concept in humans with incomplete
injuries which ultimately provided the incentive for

investigating this approach in individuals with more severe
spinal cord injuries andmotor-complete paralysis.

Epidural stimulation applies electrical fields to the dorsal
surface of the spinal cord via electrodes implanted on the
dorsum of the dura, typically either via cylindrical linear
multicontact electrodes implanted percutaneously or multi-
column paddle arrays implanted via laminotomy. Each con-
tact provides an individually programmable conductive
surface resulting in flexible combinations of mono-, bi-, or
multipolar stimulation. Lead wires are tunneled to a remote
subcutaneous implantable pulse generator that can be
modulated electronically and is often rechargeable. The
aforementioned studies have mostly implemented paddle-
type electrodes over the lumbosacral enlargement of the spi-
nal cord (variably reported as spinal levels T11-L1, T10-L1, or
T10-T12) (15–21, 23–27, 45).

In 2011, Harkema et al. (21) showed for the first time that
epidural stimulation in individuals with motor complete pa-
ralysis can restore functional lower limb movements, step-
ping, and weight-bearing standing in humans. The study
had enrolled a 23-yr-old participant with chronic high-tho-
racic motor complete sensory incomplete SCI (AIS-B). Prior
to implantation, the participant first underwent 26 mo of
physical locomotor rehabilitation with 170 body weight sup-
ported training sessions. The participant then underwent
surgical implantation of a 16-contact epidural paddle elec-
trode array (5-6-5 Specify, Medtronic, Minneapolis, MN)
placed over the posterior surface of the lumbosacral enlarge-
ment together with an implantable pulse generator (Restore
ADVANCED, Medtronic, Minneapolis, MN). Stimulation in
conjunction with targeted proprioceptive input (e.g., passive
leg positioning and joint support by trainers) enabled the
participant to perform weight-bearing standing over short
periods up to 4.25 min. Using weight- and balance support
and subjected to treadmill proprioceptive inputs, the partici-
pant was further capable of generating rhythmic locomotor-
like stepping patterns, albeit not sufficient for independent
ambulation. Standing was evoked at lower lumbosacral seg-
ments at 15 Hz, whereas stepping was facilitated at higher
frequencies in the 30–40 Hz range. Motor outputs were de-
pendent on sensory inputs: standing required bilateral
axial loading and stepping required dynamic load altera-
tion with appropriate leg positioning. Surprisingly, after 7
mo of physical rehabilitation and epidural stimulation,
the subject recovered volitional control over lower extrem-
ity motor functions during active stimulation. Secondary
findings also included improvements in blood pressure
control, thermoregulatory function, bladder, bowel, and
sexual function (21).

Angeli et al. (15) subsequently reported the findings of three
additional study participants: a second subject with AIS-B
and two individuals with AIS-A SCI. Electrophysiological
testing via transcranial magnetic stimulation and somato-
sensory evoked potentials (SSEP) were obtained to confirm
injury classification and showed absence of lower extrem-
ity motor-evoked potentials (MEPs) in all subjects, as well
as either delayed (AIS-B) or absent (AIS-A) lower extremity
cortical SSEPs. These subjects also underwent preceding
physical rehabilitation with >80 locomotor sessions before
implantation. Only the subject with sensory incomplete
SCI was anticipated to regain volitional control while the
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participants with motor and sensory complete injuries
were not expected to achieve volitional control due to the
nature of their complete injury. However, voluntary motor
control was restored in all three subjects and occurred rel-
atively quickly (within 1 mo), which was probably at least
partially attributable to the lessons learned from the ini-
tial pilot participant. All subjects regained the ability to
generate visual- or auditory-cued volitional lower limb
movements (e.g., ankle dorsiflexion or knee flexion in
supine position) with graded contraction force propor-
tionate to volitional effort. Contraction force, accuracy,
and reliability all increased throughout the training pe-
riod suggesting that spinal motor circuitry under epidural
stimulation conditions can undergo task-specific adapta-
tion. Several subjects, however, also experienced stimula-
tion side effects, e.g., clonic muscle activity that limited
motor outcome (15).

Rejc et al. (24) later reported full weight-bearing over-
ground standing with only handrail balance assist in these
study participants. Stimulation parameters needed to be
individualized and higher frequencies (range 25–60 Hz) at
more caudal contacts resulted in more effective standing
performance. The authors also found that higher frequencies
(25–50 Hz) eventually triggered rhythmic bursting patterns
at greater stimulus amplitudes. Rejc et al. reported effects of
differential task-specific training paradigms (i.e., stand-
training vs. step-training) on stimulation-augmented motor
performance. Although the authors reported beneficial
effects of stand-training on stance performance in all partici-
pants, they reported that subsequent step-training had detri-
mental effect on standing in three of the four participants.
The authors suggested thatmotor learning and network plas-
ticity may be task-specific and that certain task-specific
rehabilitation modalities may be suboptimal for or even
impair different motor tasks (25).

One AIS-B participant eventually gained volitional inde-
pendence of the epidural stimulation with the ability to
maintain volitional command independent of continued
active stimulation, i.e., the subject could continue perform-
ing volitional task-specific motor control during periods
with the stimulator turned off. This functional progression
suggests engagement of adaptive neural plasticity effects
triggered by the combined intervention (26).

Similar findings have since been reproduced and further
advanced by Lee, Zhao, Grahn, and coworkers (17, 19, 20, 45).
The Mayo Clinic group initially enrolled a 26-yr-old male
with chronic thoracic AIS-A SCI. Motor- and somatosensory-
evoked potentials were absent to/from the lower extremities.
The participant underwent 22 wk of neurorehabilitation
(61 motor training sessions) followed by lumbosacral im-
plantation of a 16-contact epidural electrode array (Specify
5-6-5, Medtronic, MN) and pulse generator (RestoreSensor
SureScan MRI, Medtronic, MN). Intraoperative low-fre-
quency (1 Hz) volleys and segmental electromyogram
(EMG)-responses were used to facilitate electrode posi-
tioning. Within eight stimulation sessions (2 wk), the par-
ticipant achieved volitional task- and joint-specific muscle
control during active stimulation: volitional rhythmic
stepping-like patterns in side-lying position, independent
weight-bearing standing with balance support in the range
of minutes, and partial weight-bearing volitional stepping.

Consistent with previous reports (see Table 1), stepping
patterns were augmented at 40 Hz whereas standing was
facilitated at 15 Hz. Throughout the 43-wk period of com-
bined dynamic neurorehabilitation and epidural stimulation,
motor performance continued to improve (19). Conversely to
Rejc et al. (25), the Mayo Clinic group found uniformly posi-
tive effects of dynamic task-specific training (combination of
step- and stand-training) on both stand and gait perform-
ance, respectively. They did, however, observe reduced
standing stability and emergence of rhythmic patterns
while using the stepping program (i.e., higher frequency
ranges). Implementing an interleaved program geared to-
ward alternating leg control, the subject was able to per-
form independent treadmill stepping without harness or
trainer support and independent overground stepping with
front-wheel walker and some trainer balance assistance.
Stepping performance and speed gradually improved from
0.05 m/s (week 25) to 0.20 m/s (week 42). Maximal single-
session distance was reported as 102 m via 331 steps.
Intraoperative protocol for electrophysiology-guided elec-
trode implantation has been reported (45). Angeli et al.
have also reported progression to functional overground
walking with assistive devices in two subjects after 15 and
85 wk, respectively, with up to 90.5 continuous meters and
maximal speed of 0.19 m/s. Both subjects had AIS-B inju-
ries, while the AIS-A participants remained limited to partially
weight-supported treadmill-stepping. Of note, a spontaneous
(nontraumatic) hip fracture occurred in one of the subjects
during treadmill training (16).

Recently, Darrow et al. (18) reported initial results of
the E-STAND trial (“epidural stimulation after neurologic
damage”). These participants did not undergo dedicated
preceding neurorehabilitation before device implanta-
tion. This study initially enrolled two female participants
with thoracic AIS-A SCI at relatively more advanced ages
compared with previous studies (48- and 52 yr, respec-
tively) and relatively longer chronicity interval from
injury (5- and 10-yr post-injury, respectively). These par-
ticipants also received lumbosacral epidural paddle leads
and implantable generators. The authors reported resto-
ration of volitional control on the first instance of appli-
cation of epidural stimulation. Interestingly, the authors
also observed restoration of volitional micturition in one
participant (albeit incomplete with residual postvoid-vol-
ume), amelioration of orthostatic hypotension in one par-
ticipant, and improved sexual function. Pe~na Pino et al.
(23) since reported follow-up results of total seven partici-
pants and found restoration of volitional control in all
subjects (six AIS-A and one AIS-B). Following chronic
stimulation, four of seven participants eventually sus-
tained volitional control, even during periods of stimula-
tion cessation. Nonetheless, magnitude and fidelity of
motor activation remained higher with stimulation ON
than OFF. Finally, Gorgey et al. reported a pilot study har-
nessing the putative benefits of epidural stimulation for
augmenting exoskeletal-assisted walking (EAW). In a sin-
gle participant with C7 AIS-A SCI, the authors found grad-
ual improvements in gait performance with decreased
swing assistance, improved EMG patterns, and up to 573
unassisted steps (50% of total steps) while using the EAW
(14).
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Secondary findings of improved autonomic function have
consistently been reported in multiple studies across centers
including improvements in bladder and bowel control, sex-
ual function, blood pressure regulation, thermoregulatory
function, increased muscle mass, and improved body com-
position (15, 17, 18, 21, 46–54). Additional applications for
other neurological functions such as restoration of respira-
tory and cough function are also being investigated and are
reviewed elsewhere (55, 56).

APPROACHES TO EPIDURAL STIMULATION:
TARGETED EPIDURAL STIMULATION

Targeted neurotechnology is designed for delivering tar-
geted stimulation in a phase-dependent manner as opposed
to continuous nonpatterned stimulation. “Targeted spinal
cord stimulation” or “biomimetic stimulation” has been pro-
posed by Courtine and coworkers (27) and Bloch and co-
workers (62–64) based on spatially and temporally dynamic

Table 1. Epidural stimulation for motor restoration in humans with spinal cord injury

References Subjects Key Findings

Dimitrijevic et al. (38) n = 6 (AIS-A) Rhythmic locomotor-like flexion/extension patterns in the lower limbs (25–60 Hz)
Jilge et al. (57) n = 6 (AIS-A/B) Sustained extension of the lower extremities (5–15 Hz)
Minassian et al. (58) n = 10 (AIS-A/B) Monosynaptic reflex activation (2.2 Hz) with short-latency muscle contraction and sustained tonic

extension (5–15 Hz); stepping-like flexion/extension patterns via longer-latency polysynaptic path-
ways (25–50 Hz)

Minassian et al. (59) n = 15 (AIS-A) Location-dependent segmental motor responses at low-frequency (2.2 Hz), e.g., upper segments
adductors/quadriceps vs. lower segments (tibialis anterior and triceps surae), amplitude-depend-
ent EMG responses

Harkema et al. (21) n = 1 (AIS-B) Supine lower limb movements (15 Hz) and stepping (30–40 Hz), weight-bearing standing and
assisted stepping; improved EMG patterns (e.g., increased muscle activation) and eventual resto-
ration of volitional control in AIS-B participant

Minassian et al. (22) n = 7 (AIS-A/B) Supine rhythmic lower extremity activity (29.5 ± 4.85 Hz); stimulation-evoked augmentation of
assisted stepping EMG patterns and differential EMG response between absence (supine) or pres-
ence (treadmill) of proprioceptive inputs

Angeli et al. (15) n = 4 (AIS-A/B) Lower extremity motor control; restoration of volitional motor control, even in AIS-A subjects; individ-
uals with motor complete paralysis conceptually processed auditory and visual input to regain vol-
untary fine motor control over paralyzed muscles

Danner et al. (60) n = 10 (AIS-A/B) Stimulation-evoked rhythmic EMG activity (29.5 ± 4.85 Hz); synergistic locomotor-like patterns with
coactiviated muscle groups

Hofstoetter et al. (61) n = 8 (AIS-A/B) Monosynaptic lower extremity reflex activation of lower extremity muscles (2 Hz) and rhythmic burst-
like activity (22–60 Hz)

Rejc et al. (24) n = 4 (AIS-A/B) Overground weight-bearing standing without external assistance; functional reliance on propriocep-
tive input for effective motor activation (e.g., sufficient muscle activation only in standing position);
improved standing with more caudal stimulation at higher frequencies (25–60 Hz)

Rejc et al. (25) n = 4 (AIS-A/B) Stand training improved stimulation-augmented standing performance; pretraining EMG patterns
more variable and bursting and associated with poorer performance/more assistance require-
ment; posttraining EMG patterns more stable and correlated with improved standing performance;
step training impaired stimulation-augmented standing performance

Rejc et al. (26) n = 1 (AIS-B) Continued volitional motor control of task-specific motor activity and weight-bearing standing, inde-
pendent of continued epidural augmentation

Grahn et al. (20) n = 1 (AIS-A) Volitional motor control over task- and joint-specific muscle activity, in side-lying and harness-sup-
ported upright position; independent unassisted weight-bearing standing (with balance support
rails); rhythmic locomotor-like activity, both in side-lying and upright position; volitional motor
control

Gill et al. (19) n = 1 (AIS-A) Independent weight-bearing standing and independent treadmill stepping without harness or trainer
support; independent overground stepping with front-wheel walker and some trainer balance as-
sistance; improved performance with interleaved EES program

Angeli et al. (16) n = 4 (AIS-A/B) Recovery of functional overground walking in two of four subjects after combined multimodal reha-
bilitation (after 15 and 85 wk, respectively, both AIS-B) with assistive devices

Wagner et al. (27) n = 3 (AIS-C/D) Establishment of “targeted spinal cord stimulation”/“biomimetic stimulation” (spatiotemporal dynamic
stimulation coordinated with gait cycle via real-time feedback triggers; restoration of volitional
lower extremity control and balance-assisted or independent weight-bearing ambulation in indi-
viduals with chronic SCI; progressive locomotor improvements during training; emergence of con-
tinued volitional control during episodes of stimulation cessation; volitional walking and cycling in
ecological environments

Calvert et al. (45) n = 2 (AIS-A) Intraoperative electrophysiological protocol for array placement; stimulation-evoked stepping-like
patterns within first week of testing

Darrow et al. (18) n = 2 (AIS-A) Restoration of volitional motor control immediately after stimulation onset without prior rehabilitation;
restoration of volitional micturition; amelioration of cardiovascular autonomic dysfunction;
improvement of sexual function (restoration of orgasm)

Beck et al. (17) n = 2 (AIS-A) Increase in lean body mass; worsening bladder compliance and increased urinary incontinence in
one participant using standing/stepping epidural stimulation program

Pe~na Pino et al. (23) n = 7 (AIS-A/B) Restoration of volitional command in all study participants; sustained volitional control in the ab-
sence of active stimulation in four of seven participants after prolonged chronic epidural
stimulation

Gorgey et al. (14) n = 1 (AIS-A) Combination of exoskeletal-assisted walking with epidural stimulation resulting in decreased swing
assistance, improved EMG patterns, and up to 573 unassisted steps (50% of total steps) using the
EAW

EPIDURAL STIMULATION AND SCI

1846 J Neurophysiol � doi:10.1152/jn.00020.2021 � www.jn.org
Downloaded from journals.physiology.org/journal/jn (078.189.212.159) on January 1, 2025.

http://www.jn.org


activation of targeted subsets of nerve roots coordinated
with the phases of the gait cycle with the goal of achieving
more natural activation patterns and relatively smoother
and more coordinated motor activation. Compared with
nonselective stimulation focused on enhancing global excit-
ability levels, the concept of targeted spinal cord stimulation
is based on the modular and dynamic activation of selective
dorsal rootlets that represent and interact with certain
“motor hotspots” within the spinal cord. The authors devel-
oped a flexible multielectrode array for the research setting
(65) and clinically available paddle electrode arrays (27) to
allow more spatial selectivity along the longitudinal extent
of the lumbosacral enlargement. To this end, more proximal
lumbar spinal segments are generally associated with hip
flexor and knee extensor myotomes, whereas more distal
lower lumbar and sacral segments are more predominantly
associated with extensor motor groups. Similarly, reciprocal
laterality of contacts may allow alternating activation pat-
terns between the two lower extremities with the goal to syn-
chronize electrical stimuli with the phases of the natural gait
cycle (e.g., stance, swing, propulsion phase). This could
potentially leverage physiological spinal circuit synergisms
while minimizing simultaneous coactivation of potentially
antagonistic contralateral inhibitory circuits. Dynamic tem-
poral patterning of the stimulus algorithms can be flexibly
adjusted to coincide with phases of the gait cycle and task-
specific participant training can further augment the appro-
priate timing of volitional effort with the neural prosthesis.
For example, coordinated and selective sequential dorsal
roots excitation to activate the hip flexors and ankle dorsi-
flexors to initiate forward swing phase, followed by activa-
tion of the knee extensors to promote weight-acceptance
and stance phase, followed by hip and ankle extensors to
promote propulsion. Studied initially in rodents (64, 66, 67)
and nonhuman primates (62), this approach has shown to be
able to restore functional lower extremity movement and
stepping motion using treadmill- and gravity-assisted sup-
port devices, as well as trigger facilitative neuronal network
reorganization and axonal sprouting (68). In a recently pub-
lished human clinical study, Courtine, Bloch, and coworkers
(27) enrolled three individuals with chronic motor incom-
plete mid-/low-cervical SCI of 4–6 years duration post-
injury. Importantly, unlike the other studies discussed
earlier, this study has focused on subjects with less severe
AIS-grades (2 AIS-C, 1 AIS-D). The subjects underwent implan-
tation of epidural paddle electrodes (Specify 5-6-5, Medtronic,
Minneapolis, MN) in combination with implantable pulse
generators (Activa RC IPG, Medtronic, Minneapolis, MN)
using a combination of fluoroscopic guidance and electro-
physiological guidance using intramuscular EMG electrodes
and targeted trial stimulation. The authors found immediate
improvement of volitional control, even over previously para-
lyzed muscle groups, progressive locomotor improvements
with graduated muscle activation, and improved volitional
control throughout the course of the training period. Notably,
although the participants had motor incomplete SCI, they did
have severe motor impairments, with one participant (“P1”)
showing strength grade 0 throughout one entire lower limb
that improved by multiple strength grades and improvement
by one AIS-grade from AIS-C to AIS-D with epidural stimula-
tion. Across participants, the authors reported restoration of

volitional lower extremity control evoking single-joint
movements, full weight-bearing standing, and functional
coordinated compound movement patterns such as tread-
mill ambulation up to 1,200 steps and 1 h duration, and
even weight-bearing balance-assisted overground ambu-
lation (27, 69). The authors found superior motor coordi-
nation and performance using their dynamic targeted
stimulation paradigm when compared with continuous
tonic stimulation. This finding is overall consistent with
results from the Mayo Clinic group who also reported
enhanced motor performance with a more selective inter-
leaved stimulation program (45). Wagner et al. (27) also
reported eventual emergence of continued volitional
command despite periods of stimulation cessation, as well
as functional lower extremity mobility in ecological environ-
ments including cycling or volitional walker-assisted inde-
pendent overground ambulation. This study has since enrolled
additional participants, including several subjects with motor
complete spinal cord injury; however, the results of the full
patient cohort have not been published, to date.

MECHANISMS OF EPIDURAL STIMULATION
FOR MOTOR RESTORATION

Electrical Recruitment and Activation of Large-Diameter
Afferent Fibers

Primary electrical neuronal/axonal recruitment is a func-
tion of the anatomical location (i.e., spinal segments), shape
and properties of the electrodes (i.e., lead geometry, conduc-
tive properties, and stimulus parameters), and regional
tissue properties for current spread and electrical depolariza-
tion (e.g., membrane resistance and capacitance). Epidural
electrodes apply a relatively broad electrical field, impacting
multiple tissue types at levels that are largely determined by
the specific conductivity properties of each tissue type. The
cerebrospinal fluid (CSF) is a highly conductive medium
allowing the electrical current to spread across some dis-
tance (70–72). One of the excitable elements when stimu-
lated epidurally can be the dorsal root afferents, particularly
at the level of the vertical projections of the dorsal root entry
zones (58, 63, 71, 73–80). The lumbosacral dorsal nerve roots
have a prominent intrathecal component placing them near
the stimulating electrodes with favorable membrane proper-
ties for electrical depolarization (59, 81,82). According to
classical cable theory, axon diameter is directly proportional
to membrane capacitance and inversely proportional to
membrane resistance (83). Large-diameter myelinated axons
are therefore generally more excitable by electrical current
(84, 85), predominantly comprised of proprioceptive A-a
fibers followed by other mechanoreceptive A-b fibers (86).
This hypothesis is supported by computational modeling
(73, 76, 78). The accuracy of the description of the anatomical
and physiological features of the spinal dorsal roots noted is
not in question.

However, isolated focus on axon diameter/fiber size as the
single driving factor for electrical neuromodulation to explain
the vastly complexmotor behavioral effects of epidural stimu-
lation (and other neuromodulation techniques) does not
appropriately account for the complex underlying physiologi-
cal mediators. For example, electrical neuromodulation can
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alter physiological states of dendrites and soma in other char-
acteristics short of triggering an action potential. Moreover,
can it be assumed that the conduction properties of an axon
are functionally analogous to a network of neurons under in
vivo conditions? Little is known of the basic physiology of net-
work dynamics, particularly under in vivo conditions. In
short, there are abundant reasons for caution in assuming
that axon size is the single critical factor in explaining the be-
havioral outcomes of spinal networks when being neuromo-
dulated across a wide range of stimulation parameters and
spinal lesions that can vary widely. Moreover, larger stimulus
intensities may result in sufficient electrical field expansion to
enclose the dorsal aspects of the spinal cord and evoke neuro-
modulatory changes of the dorsal column fibers directly.
Neuromodulation can alter excitability and activity states of
intrinsic spinal and supraspinal networks that change their
physiological states to lower or higher levels of excitability,
even without generating an immediatemotor output (72, 87).

To discuss this topic in a broader perspective there are
many “targets” or strategies being pursued by different
laboratories for optimizing functional outcomes of epidural
spinal cord stimulation. With respect to technological strat-
egies, site of electrical stimulation, details of the design of
the electrodes, and a long list of stimulation parameters and
the temporal patterns that are used have differing points of
focus. It is noteworthy that the physiological impact of each
of these variables are highly interdependent, that is, chang-
ing one parameter is highly likely to change the response of
the other parameters so that the overall outcome cannot be
easily predicted in any given subject or setting. From a phys-
iological perspective, the mechanisms impacted by each of
the variables noted, in our view, remain poorly defined. It
remains unclear how tightly the technological variables
noted are linked to the physiological mechanisms that
account for a givenmotor output. For example, placement of
the electrodes only vaguely defines the pathways and neuro-
nal types that are modulated. Electrical activation of large-
diameter dorsal root afferent fibers as the sole physiological
mechanism driving complex and volitional motor patterns
may fall short of the comprehensive mechanisms involved
in evoking the observed motor patterns. The mechanism for
the improved coordination among motor pools in response
to epidural stimulation remains largely undefined. How fine
motor control of movement is modulated within the spinal
circuitry, e.g., which mechanisms provide the activation pat-
terns of multiple motor pools and to some a lesser extent,
the level of recruitment of motor units within a single motor
pool, remains incompletely understood. The latter mecha-
nism, the size principle, is a rather automatic process, i.e.,
the level of recruitment of motor units that determines the
force and power generated by that single motor pool. The
mechanisms of modulating the dynamics of a constantly
changing combination of multiple motor pools remain to be
determined. For these reasons, we think that as technology
advances in concert with a more detailed understanding of
the neurophysiological mechanisms at the network and
systems level, it can become increasingly possible to inter-
vene in the intrinsic control strategies among spinal net-
works more successfully. Perhaps, from a bioengineering
perspective, the goal should be to match the functional
design that is intrinsically natural to the spinal networks.

Magnitude of stimulation can be regulated to directly induce
versus enable motor function. Most of the strategies
employed, to date, appear to engage both techniques,
largely, stimulation greater than the immediate “passive”
motor threshold versus facilitation of “active” motor control
via subthreshold network modulation. We suggest that the
effects of epidural stimulation on movement control consist
of modulating the physiological activity states of selected
networks, i.e., the proximity of the excitable level (relative to
the motor threshold of a network) before the activating sig-
nal as being as important in defining the output movement.
Although currently the predominant impact has been placed
on the recruitment of proprioceptive afferents, evoked
movement patterns appear to incorporate a wide range of
specific motor behaviors likely beyond the scope of simple
electrical all-or-none activation of any single afferent recep-
tor/fiber type.

Spinal Motor Networks

Understanding the topography and organization of motor
circuits is critical for optimizing spinal neuromodulation
approaches. The spinal cord originates in continuity with
the brain and descends within the spinal canal and gives of
31 segmental spinal nerves. The spinal cord contains two
enlargements: the cervical enlargement for innervation to
the upper limbs and the lumbar enlargement for innervation
to the lower limbs, respectively. Spinal motor neurons are
somatotopically organized into elongated cigar-shaped func-
tional clusters termedmotor neuron pools that can span one
or multiple spinal levels (88, 89). Topographical organization
of motor neurons and networks are evolutionary conserved
within and across species (90–93). Lower motor neurons are
capable of powerful functional signal integration and modu-
lation (94). There are also complex interneuronal networks,
such as the propriospinal system, that connect different neu-
ron clusters, spinal segments, and hemicords for effective
and efficient signal integration and motor coordination (95–
97). Additional pathways that synapse within the ventral
gray matter include descending cerebrospinal projections,
notably the pyramidal system (corticospinal tracts) and
extrapyramidal tracts (e.g., reticulospinal, vestibulospinal,
rubrospinal, and tectospinal tracts). Ultimately, all motor
signals exit the spinal cord via the efferent limb of the motor
network via effector motor neurons traveling via the ventral
rootlets to the neuromuscular junction of the musculoskel-
etal system.

Under physiologic conditions, load-bearing postures such
as stance and ambulation are geared to maintain equilib-
rium in the upright position while withstanding gravita-
tional forces and external perturbation (72, 98). Certain
aspects of these processes are integrated directly within the
spinal motor networks. Increased load-bearing generally
enhances extensor tone, while inhibiting the flexor compart-
ment. Proprioceptive feedback signals, such as axial loading
and baseline joint angle, are integrated in real time within
the spinal circuitry for coordinating phases of the locomotor
cycle and are integrated into dynamic spatiotemporal activa-
tion patterns ofmotor neuron populations that facilitate pro-
gression through the gait cycle (27, 99–102). Similarly, a host
of SCI studies in rodents (74, 75, 81, 103–114), cats (115–117),
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rabbits (118), and humans (see Table 1) have consistently
demonstrated that lumbosacral motor networks (subjected
to epidural stimulation) are capable of adjusting muscle tone
in response to dynamic load-bearing alterations (e.g.,
changes in treadmill speed or direction). Recently, Courtine
and coworkers (119, 120) reported evidence frommousemod-
els of SCI that epidural activates proprioceptive neurons
within the dorsal root ganglion and that muscle spindle
proprioceptive afferents are critical for mediating epidural
stimulation-evoked motor effects showing that genetic
knockdown can abolish motor recovery.

Neuronal Networks and Signal Transduction

Certain spinal reflex pathways may be involved in media-
ting some of these signals and several prominent examples
have been characterized at an intrasegmental, intersegmen-
tal, and commissural level (121–123). Well-described reflex
pathways include the Ia- (muscle spindle, myotactic reflex),
Ib- (Golgi tendon organ, inverse myotatic reflex/autogenic
inhibitory reflex), II-reflex (polysynaptic myotactic), and
flexor-reflex-afferent (FRA, withdrawal reflex, nocifensive
reflex) (124). Ia-fibers have expansive intra- and interseg-
mental connections with homonymous and synergistic
motor neuron pools via direct synapses, and negative inhibi-
tory connections to antagonistic motor pools via interneur-
ons (125, 126). Ia and Ib inputs may be involved in postural
stability and enhancing extensor contraction during stance
(127–129). The flexor-reflex-afferent (FRA) pathway may be
involved in the swing phase of gait and for maintaining pos-
tural balance during sudden gravity shifts via ipsilateral
excitatory interneurons to the flexors (and extensor inhibi-
tion) together with decussating contralateral excitatory
interneurons to the extensors (and flexor inhibition) (124).
Mono- and polysynaptic pathways may be involved in a
phase-dependent manner (72, 81, 130, 131). Different muscle
groups appear to show different activation patterns: exten-
sors seem to be more directly activated via monosynaptic
connections, whereas flexors appear to be activated via more
indirect polysynaptic pathways (58, 132). In addition, pro-
prioceptive inputs are paramount for priming, shaping, and
aligning task-specific motor outputs. For example, under
constant epidural stimulation parameters, responses appear
to favor flexor patterns in supine position, while positional
shift into upright and weight-supporting posture shifts bal-
ance toward extensor tone (72). Similarly, under constant
stimulation settings, continuous predominant extensor
EMG-signals are recorded during weight-bearing, whereas
only negligible extensor patterns occur during sitting pos-
ture (24).

In addition, evoked motor patterns are also stimulus pa-
rameter dependent: low frequency (e.g., 2–5 Hz), high ampli-
tude stimulation typically evokes short-latency segmental
muscle contractions, believed to be mediated via monosy-
naptic integration from large-diameter afferents, termed
posterior root muscle reflex (PRMR) response. These short-
latency compound action potentials are segment-dependent
with higher lumbar spinal levels recruiting more proximal
hip and thigh muscles, whereas more caudal locations
recruit distal leg and calf muscle groups. Intermediate fre-
quency ranges (e.g., 5–15 Hz) result in more continuous

motor tonicity patterns favoring extensor motor groups,
before at higher frequencies (e.g., 25–50 Hz) activation shifts
toward flexor patterns and rhythmic alternating locomotor-
like patterns emerge. Even higher frequencies (e.g., greater
than 70–100 Hz) can result in deceleration and eventual ces-
sation of rhythmic patterns (57, 59–61, 72, 79, 133, 134).
Importantly, polysynaptic interneuronal integration may be
the primary mechanism for invoking the long-latency mus-
cle responses (72) associated with the generation of stepping
patterns (38, 72, 114, 131). Limited evidence has been reported
on how chronic epidural stimulation may result in electro-
physiological changes within the spinal and supraspinal-spi-
nal pathways.

Central Pattern Generators

The concept of “central pattern generators” (CPG) dates to
the early 1900s. CPGs have been hypothesized as an intrinsic
feature of the spinal circuitry involved in a breadth of stereo-
typical motor patterns across invertebrates and vertebrates
including breathing, mastication, swallowing, micturition,
ejaculation, scratching, crawling, swimming, flying, and
locomotion (124, 135–137). These hypothesized specialized
neuronal networks can autonomously generate oscillatory
action potentials for initiating and maintaining certain
rhythmic motion patterns, without immediate oscillatory
inputs. The hallmark feature is the ascribed capability of
generating coordinated movements in repeatable and recog-
nizable patterns that mimic locomotion, thus referred to as
fictive locomotion, in the absence of supraspinal and/or sen-
sory inputs from neuronal networks (41, 138–142). Sir Charles
Sherrington and his student Thomas Graham Brown studied
the concept of locomotor CPGs in the early twentieth cen-
tury in decerebrate and spinally transected cats and dogs
(97, 124, 135, 136, 143, 144). The “half-center” model was pro-
posed, consisting of two reciprocally organized opposing
groups of spinal interneurons (an extensor and a flexor half-
center) in an alternating-dominant pattern of mutual inhibi-
tion resulting in rhythmic stepping. Supported by additional
research from Anders Lundberg and Elzbieta Jankowska in
the 1960s (97, 145, 146), these half-centers are sometimes
referred to as CPGs. At that time there was little understand-
ing of the neural basis of this rhythmic output, but an
obvious question was whether this rhythmicity was derived
within the intrinsic spinal neurons or a mere function of
rhythmic sensory inputs from the periphery. Another impor-
tant question was which spinal neurons, if any, could gener-
ate this rhythmicity. A series of experiments using dorsal
root sectioning and/or curare injections (paralytic agent to
prevent muscular contractions) showed that rhythmic out-
put could be generated in the absence of sensory and supra-
spinal inputs.

There remains controversy as to whether rhythm genera-
tion and patterning are mediated via different mechanisms
(96, 147–151). From our perspective there is no compelling
reason why the same interneuron networks would not be
controlling both these highly interlinked features of locomo-
tion. Both rhythmic initiation and stereotypic patterning are
key parameters that define the character of every movement.
The essential functions of the proposed locomotor CPGs within
the mammalian lumbosacral region remains a point of
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contention and towhat degree different rhythms and coordina-
tion patterns rely on specific interneuronal subtypes remains
unknown. Numerous spinal reflexes have been implicated in
the task-dependent modulatory functions during spinal
locomotion and have been proposed as part of the locomotor
CPG (97). There is a large number of studies investigating
candidate CPG neurons including anatomical, electrophysio-
logical, biochemical, pharmacological, and genetic studies
(124, 135, 136, 152–155). Candidate CPG neurons have been
identified near the central canal and within the medial in-
termediate zone along the lumbar spinal segments to be
functionally linked to locomotor rhythms (156, 157).
Although there have been several knockout models that
have shown alterations in movement patterns, none have
been identified as being uniquely accountable for rhyth-
mic motor neuron excitation in vivo. Following the
renewed interest in the concept of central pattern genera-
tion largely from Grillner and coworkers (124, 151, 158–
162) in the mid-1960s, there have since been hundreds of
papers published attempting to answer the questions
noted earlier.

From a systems perspective of the biology of CPGs, it
seems improbable that there is a single type or even group of
cell types to perform even fictive locomotion nor does it
seem that the biological function can or should be assumed
to be an all-or-none function. The common outcome that
might be expected in such efforts is that during experimental
systematical elimination of cell types or groups of neurons
or networks, there will be an increasing decline in the robust-
ness of the redundant cyclic activity. The interpretation of
these experimental approaches is even more complex, given
that it is unlikely that anymammalian behavior that is cyclic
will yield an all-or-none result under in vivo conditions.

Importantly, although there are evolutionary-conserved
locomotor principles across invertebrates and vertebrates
(163), human gait is characterized by several unique features
that distinguish it from invertebrates or even other verte-
brates (164, 165). A key question is how the neural control of
locomotion in humans has adapted given the inevitably
added complexities in fully integrating the sensory-motor
behaviors that are unique to humans. It is rather clear that
the locomotor CPG phenomenon persists in humans. A key
question is, how the neural control of CPGs has changed in a
nervous system that has acquired the ability to control the
unique behaviors of humans. Although facilitated stepping
can be achieved via a relatively nonspecific tonic lumbosac-
ral stimulation, functional and balanced gait restoration in
humans has beenmore challenging. Although the functional
importance of CPGs in humans thus remains topic of debate,
its ability to generate fictive locomotion, that is, rhythmic
pattern activation of motor pools that approximates in vivo
locomotion is unlikely to be its essential feature in the con-
trol of actual physiological locomotion.

Motor SystemModulation during Weight-Bearing and
Ambulation

One hypothesis of SCI is that loss of descending corticospi-
nal connections disrupts downstream spinal motor networks
from their “movement trigger” resulting in functional
depression into a latent state that impedes volitional and

functional motor production (21, 113). In addition, aberrant
and dysfunctional plasticity changes and maladaptive net-
work remodeling occur that can itself present a hindrance to
motor activation via residual connections. Tonic epidural
neuromodulation below the motor threshold combined with
task-specific sensory input may facilitate shifting neuronal
balance from a latent inactivity state toward generation of
certain task-specific “movement programs.” Under certain
conditions, this mechanism can evoke muscle contractions
forceful enough to sustain full weight-bearing, generate ster-
eotypic stepping patterns capable of achieving short-dis-
tance treadmill and overground ambulation, and even
restore volitional control (16, 17, 19, 23, 24, 27). The current
understanding places paramount importance on functional
integration of proprioceptive signals within the inherent
capacities of spinal motor circuits. Electrical stimulation of
these dormant functionally incompetent motor circuits
may thus enhance excitability states and decrease activa-
tion thresholds from residual connections priming them
for task-specific propriospinal and/or supraspinal activa-
tion. Functional plasticity and facilitative network reor-
ganization may further shift the neural balance toward
volitional motor promotion by reactivating residual (yet
clinically latent) signal transmission from spared supra-
spinal connections to reinstate volitional command (21,
105) (Fig. 1). Moreover, the ability to sustain volitional
command after prolonged epidural stimulation, even dur-
ing periods of stimulation cessation, serves as further indi-
cation that long-term plasticity effects may be capable of
“reawakening” underlying latent neuronal networks and
restoring enhanced functionality (23, 26, 27).

CHALLENGES AND LIMITATIONS

Study Design

Selection criteria for most studies reviewed in Table 1
have focused on clinically classified motor complete pa-
ralysis (i.e., only AIS-A or AIS-B participants) with injury
chronicity greater than 1 yr. The 1-yr requirement was
selected because it is generally accepted that spontane-
ous recovery does not typically occur beyond 6–12 mo
postinjury. Therefore, any observed effect could be attrib-
uted to the stimulation paradigms in concert with the
locomotor training. Notably, the initial clinical reports
incorporated large-scale preceding and concomitant neu-
rorehabilitative efforts (15, 16, 19–21, 25, 26).

Prolonged periods of very low levels of neuromuscular
activity result in physical deconditioning, muscle atro-
phy, and changes in bone composition. In the setting of
trials involving rigorous physical activity, these factors
are important considerations. Therefore, a precondition-
ing period was also included to optimize the level of phys-
ical activity before imposing higher levels of activity-
induced stress on muscle, connective tissues, neural tis-
sues, and bones induced by stimulation and locomotor
training combined. The long-term effects of prolonged
periods of inactivity may exert on the individuals’ muscu-
loskeletal system and neural circuits remain unclear.
Careful attention to this issue must be continuously pres-
ent throughout the study, since participants with SCI-
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related neurologic deficits may not perceive conscious sig-
nals of exertion or neurological or physical injury.

Preceding locomotor training before initiation of epidural
stimulation also raises a question regarding the synergistic
or even independent effects of the neurorehabilitative efforts
on the spinal motor networks. To this end, there is abundant
evidence that subjects with severe, but incomplete injury
can regain some locomotor function with task-specific loco-
motor training alone (8, 166–169). Recently, the E-STAND
trial (18, 23) has included participants with even longer peri-
ods of injury chronicity and without any preceding physical
conditioning. This preliminary data indicate that similar
functional outcomes may be possible without as extensive
preceding or simultaneous physical rehabilitation. However,
potential implications on physical stress and associated risks
for musculoskeletal injury related to deconditioning remains
to be determined.

Understanding the Neural Pathways and Stimulation
Control Challenges

Although there is mounting evidence that the neuromo-
dulatory effects of epidural stimulation can be mediated by

activating the dorsal root afferents, less is known about
the effects of motor subthreshold modulation of spinal inter-
neuronal networks that are modulated into different physio-
logical states. This type of modulation prepares networks for
activation triggered by multimodal sensory ensembles. To
this end, further investigation will be necessary to character-
ize these pathways and networks further. Putative modula-
tors of motor augmentation include a variety of inputs
including descending pathways from the cortex, subcortical
centers, and cerebellum, and proprioceptive/sensory affer-
ents (and/or central pattern generators) for controlling pos-
ture, coordination, gait, and locomotor speed. However,
most data related to mechanisms, to date, are still based on
anatomical, often preclinical studies, and sometimes com-
puter modeling studies, and little is known about the real-
time effects and network changes in vivo in humans.
Furthermore, understanding the circuitry changes in the set-
ting of spinal cord injury and the dynamic plasticity effects
of neuromodulation will further aid treatment optimization
of neuromodulatory interventions. In addition, identifying
the most effective spinal stimulation targets, developing
dynamic controllers to optimally recruit the key mediating
pathways while limiting nonbeneficial or detrimental co-
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Figure 1. Lumbosacral epidural stimulation for augmenting lower extremity function and restoration of volitional motor control. Spinal cord injury results
in disruption of corticospinal and extrapyramidal tracts that may result in complete motor paralysis. Residual latent supraspinal connections may persist
in a clinically dormant state and the intrinsic lumbosacral spinal motor networks also remain, albeit functionally suppressed. Lumbosacral epidural stimu-
lation may exert local electrical field effects to enhance neural excitability levels toward motor promotion. Stimulation may modulate proprioceptive affer-
ents at the dorsal root level and recruit higher-order synaptic effects for integration with intrinsic interneuronal networks and residual supraspinal inputs
to recapture volitional motor unit recruitment. Together with synergistic proprioceptive signals, epidural stimulation may enable task-specific volitional
motor control and restore compound motor functions such as weight-bearing standing and treadmill or overground ambulation, even in settings of clini-
cally complete spinal cord injury.
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activations, and developing interleaved and adaptable
stimulation programs to best facilitate differential motor
functions will likely be necessary to improve functional gains.
Fluoroscopic imaging can provide macroscopic information
for device implantation; intraoperative neurophysiological
testing via evoked monosynaptic segmental myotomal EMG-
response patterns can be used to complement and guide
appropriate array placement, both in rostrocaudal andmedio-
lateral orientations along the three-dimensional neuroaxis
(45). However, the feasibility of reliably activating these opti-
mal stimulation locations in the awake, behaving state
remains to be established. Once the neural prosthetic is deliv-
ered successfully, device programming has proven challeng-
ing requiring extensive trial-and-error evaluation. Optimal
stimulation configuration and parameters, including cathode
and anodes orientations, exact combinations of pulse dura-
tions, frequencies and amplitude of the current are still
elusive. The most effective electrode configurations and
stimulator settings can vary, are subject-specific, and may
even show task-dependent and dynamic temporal vari-
ability (15–17, 19–21, 24, 26). Design and geometrical proper-
ties of the electrode (e.g., size, shape, contact arrangement,
and orientation) may be a beneficial adjunct to favorably
adapt spatial features of the electrical field such as distance
between activated contacts and targeted neural structures.
Dynamic selection of stimulation parameters (e.g., ampli-
tude, frequency, pulse widths, electrode contact setup, and
polarity) may be useful for finetuning neural recruitment
with spatial optimization (86).

Finally, it remains unknown where the ceiling for func-
tional gains using an epidural approach may be. Epidural
stimulation as a technology has inherent limitations with
regards to electrical field specificity. Undirected stimulation
spillover to functionally unrelated or even antagonistic
motor groups is likely an inherent limitation of widespread
current dispersion and may be dose-limiting. Clonic activity,
spasticity, or generalized contractions have been reported in
several studies, especially using high amplitude and wide-
field stimulation settings (15, 21, 72). Such effects have also
similarly been observed with thoracic epidural stimulation
for restoration of cough. Stimulation of the lower thoracic
spinal cord at intermediate frequencies and higher ampli-
tudes evoked stimulation side effects including unintended
spasms of the trunk and thigh muscles resulting in back or
leg jerks, as well as autonomic dysreflexia (170–173).

Therefore, it remains to be seen what degree of accu-
racy, reliability, and effectiveness of motor outputs can be
achieved. Different programs may likely be required to
optimally augment either stance or ambulatory perform-
ance, especially in the setting of interindividual or plastic
network differences. Furthermore, conventional nonpat-
terned continuous waveforms may not be optimal for
recruiting spinal circuitry and may, in fact, be detrimental
by creating antidromic block of proprioceptive afferent
inputs that are critical for successful signal integration. Bi-
directional depolarization of proprioceptive axons, espe-
cially tonic continuous stimulation, may create antidromic
block of these vital afferent inputs during depolarization vol-
leys. Although antidromic block may mediate some of the
positive effects on spasticity, it may hinder functional signal
integration for neuroaugmentation. Recent computational

models by Formento et al. (76) have suggested that neuro-
physiological differences between rodents and humans may
render occurrence of “antidromic collisions” more probable
in humans (especially for distal muscle groups). In addition
to inherent interspecies differences in neural circuitry, this
factor may contribute to the current limitations in locomotor
performance in humans compared with rodent stepping re-
covery (76, 174). Phasic (rather than tonic) stimulation pro-
grams may prove more efficacious for motor restoration by
facilitating synergistic integration with these crucial proprio-
ceptive afferent inputs (17, 19, 27, 76).

Open-Loop versus Closed-Loop Controllers

Open-loop controllers are not capable of performing
real-time device adaptations to compensate for variabili-
ty in motor recruitment. During activity, the human ver-
tebral column and spinal cord can undergo certain types
of mechanical deformation including flexion/extension,
axial compression/elongation, rotation, and torsion. To
this end, although an epidural electrode array becomes
relatively affixed and static within the epidural space due
to engulfing scar tissue, the spinal cord itself, being sus-
pended relatively freely within the cerebrospinal fluid,
has a moderate degree of mobility and flexibility within
the thecal sac. In turn, the spinal cord can yield to the
substantial degree of spinal mobility, and in the setting of
postural changes (e.g., supine vs. upright) or dynamic
motion patterns such as gait, it can undergo a certain
degree of shift along its three-dimensional neural axis
within the thecal sac. Shift between the posterior spinal
surface and critical dorsal root entry zones relative to the
electrode contacts, both regarding distance and spatial
orientation, can present an important challenge for stable
neural interfacing. In addition, open-loop algorithms are
incapable of adapting for unexpected external or internal
perturbations or other dynamic system changes. Lack of
feedback integration of positional signals from the mus-
culoskeletal and propriospinal system into the neuro-
prosthetic controller remains a major challenge for many
neural prosthetic approaches and can limit postural sta-
bility and balance, and result in unsteady, turbulent, and
clumsy motion. Conversely, closed-loop controllers are,
by definition, distinguished by their capacity of perform-
ing internal feedback signal integration to perform real-
time stimulus corrections aligned toward planned motor
output (27). To this end, muscle recruitment typically
does not follow linear recruitment characteristics. Muscle
fatigue can gradually diminish contraction force, and
external perturbations (e.g., uneven surfaces) can present
important challenges for maintaining stability and equi-
librium, especially in the absence of supraspinal correc-
tive inputs from pyramidal and extrapyramidal neurons.
Feedback signal recording and implementation of control
algorithms may have potential for offsetting progressive
muscle fatigue (175, 176) and modulating gait perform-
ance (177). As surmised by McCloskey and Prochazka (178):
“one can only control what one senses.” Integration of con-
trol systems with biomimetic sensors monitoring proprio-
ceptive information such as position in space or evoked
torque and force transduction has significant potential to
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facilitate superior motor performance. Several approaches
have been suggested including external or peripherally
implantable sensors (179). In addition, recording of electro-
physiological activity from the dorsal root ganglia (DRG) has
been reported as a putative approach for detecting and inte-
grating proprioceptive input (177, 180). For example, DRG
microrecordings in walking cats have been shown to corre-
late with limb position and velocity with high fidelity and
precision (181). Anatomical proximity may render DRG
recordings beneficial for integration with epidural stimula-
tion. A feedback controller loop may thus improve smooth-
ness, reliability, stability, and endurance of the evoked
motor output, whereas a volitional loop (e.g., brain computer
interface) may augment intention control for appropriate
“program” selection in real-time while potentially augment-
ing residual translesional control. Recently, Courtine, Bloch,
and coworkers have successfully integrated certain feedback
triggers into their epidural stimulation technology including
devices such as inertial measurement units attached to the
feet to provide motion feedback, walker clickers to indicate
initiation of reciprocal alternating stepping, together with
elements of user control via voice activation or tablet control
into their paradigm of targeted spinal cord stimulation to
allow the study participants independent use of the stimula-
tor program within ecological settings outside of the
research environment (27). This promising endeavor and fol-
lowing next-generation iterations will likely be critical for
more widespread utilization and larger scale clinical trials,
as well as allow the individuals ease of use and independent
implementation in their home and public environments.

Based on the current rate of development of technological
capabilities to merge with the intrinsic control capabilities of
the neural control networks remaining after an injury, it
seems inevitable that the availability of that technology, in
the short run, will be limited to a small segment of the
severely injured by its cost in technological support and the
duration of the development time. But the more important
point in the technological development is to begin to be
aware of future possibilities. And finally, regarding techno-
logical solutions, its potential can be amplified by smoothly
interfacing with the basic biological principles of locomotor
control that persists after an injury.

Integrative Motor and Neurological Restoration

There remain numerous challenges to enhance func-
tional mobility with meaningful day-to-day improve-
ments. Widespread implementation will require devices to be
practical, feasible, user-friendly, and adaptable, as well as
durable and reliable for stable day-to-day performance
over the lifetime with minimal risk and maintenance (182).
Aesthetics and cosmesis are of obvious and important con-
cern. Themajority of individuals with SCI would prefer a fully
implanted neuroprosthesis over externally visible devices
that may be cosmetically displeasing and/or uncomfortably
stigmatizing for the users (6). Electrodes and implantable
pulse generators for epidural stimulation (although not spe-
cifically designed for motor restoration) are available in clini-
cal practice with good safety profile. Often, however, the
electrode designs are adapted from pain applications and are
not specifically designed for neurorestorative purposes.

Epidural stimulation has shown promise for evoking
graded, controlled, and moderately specific motor functions,
restoring volitional control, and for augmenting full weight-
bearing stance, cycling, treadmill, and overground stepping,
even in cases of complete SCI. Challenge remains to facilitate
more durable and reliable responses and improve degree of
motor control toward more independent and unassisted
functional gains outside of the research setting. Fidelity of
evoked motor responses is inconsistent, variable between
participants, andmay be hindered by limited degrees of free-
dom. Although most studies of epidural stimulation for
motor restoration, to date, have targeted the lumbar enlarge-
ment for augmentation of gait, exploratory studies targeting
the cervical enlargement for restoration of upper extremity
function such as reach and grasp are also emerging (183–
187). Investigative efforts implementing thoracic epidural
stimulation for augmentation of respiratory function and
cough are similarly underway (55, 56). Beneficial effects on
autonomic cardiovascular function, thermoregulatory func-
tion, body weight composition, bowel function, sexual func-
tion, and bladder function including restoration of volitional
micturition have consistently been observed in these studies
and are being increasingly investigated as either secondary
endpoints, and also being investigated as primary endpoints
in dedicated studies (17, 18, 46, 47, 49–54, 105). In principle,
it appears that spinal cord stimulation holds substantial
potential to restore multiple neurological functions via a sin-
gle neuroprosthetic device to achieve more comprehensive
functional gains.
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